دوره 5، شماره 4 - ( 10-1402 )                   جلد 5 شماره 4 صفحات 6-1 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Amini J, Feridouni E. miR-181-5p, miR-19-3p, miR-144-3p, miR-101-39.2, miR-218-5p Target Autism Genes and Regulate Axon Guidance, cAMP and MAPK Signalling Pathway. sjmshm 2023; 5 (4) :1-6
URL: http://sjmshm.srpub.org/article-3-190-fa.html
امیی چواد، فریدونی الهام. miR-181-5p، miR-19-3p، miR-144-3p، miR-101-39.2، miR-218-5p ژن های اوتیسم را هدف قرار می دهند و هدایت آکسون، cAMP و مسیر سیگنالینگ MAPK را تنظیم می کنند. نشریه علوم پزشکی و مدیریت سلامت. 1402; 5 (4) :1-6

URL: http://sjmshm.srpub.org/article-3-190-fa.html


گروه بیوتکنولوژی پزشکی و علوم مولکولی، دانشگاه علوم پزشکی خراسان شمالی، بجنورد، ایران.
چکیده:   (44 مشاهده)
اختلال طیف اوتیسم (ASD) اصطلاحی است که برای توصیف مجموعه ای از اختلالات رفتاری و روانی و نقایص ارتباط اجتماعی با فعالیت های تکراری که مادام العمر است، استفاده می شود. مطالعات اخیر زیربنای پیچیده ژنتیکی و وراثت پذیری بالا برای اوتیسم را نشان داده اند. با توجه به علائم رفتاری گسترده بیماری در بیماران مبتلا به اختلالات رشد عصبی، تشخیص صحیح و سریع آن مشکل است. بر این اساس، استفاده از روش های مولکولی و نشانگرهای زیستی مانند microRNA ها می تواند در تشخیص اوتیسم از سایر اختلالات رشد عصبی مفید باشد. در این مطالعه، ما از پایگاه‌های اطلاعاتی برای یافتن microRNAها و ژن‌های هدف آن‌ها استفاده کردیم که بیشترین ارتباط را با پاتوژنز ASD دارند. ارتباط بین اوتیسم و سایر اختلالات رشد عصبی نیز مورد بررسی قرار گرفت. بر اساس تجزیه و تحلیل microRNA ها، miR-181-5p، miR-19-3p، miR-144-3p، miR-101-39.2، miR-218-5p بیشتر با اوتیسم مرتبط هستند.
واژه‌های کلیدی: اوتیسم، miR-181-5p، miR-19-3p، miR-144-3p، miR-101-39.2، miR-218-5p
متن کامل [PDF 537 kb]   (10 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: بیوشیمی، ژنتیک و بیولوژی مولکولی (عمومی)
دریافت: 1402/6/24 | ویرایش نهایی: 1402/9/1 | پذیرش: 1402/9/7 | انتشار: 1402/10/4

فهرست منابع
1. Grabrucker AM Editor. Autism Spectrum Disorders. Exon Publications Copyright© 2021, Brisbane (AU). 2021. [DOI:10.36255/exonpublications.autismspectrumdisorders.2021]
2. Sauer AK, et al. Autism Spectrum disorders: Etiology and pathology. Exon Publications, 2021; 1-15. [DOI:10.36255/exonpublications.autismspectrumdisorders.2021.etiology]
3. Baio J, et al. Prevalence of autism spectrum disorder among children aged 8 years-autism and developmental disabilities monitoring network, 11 sites, United States, 2014. MMWR Surveillance Summaries, 2018; 67(6): 1. [DOI:10.15585/mmwr.ss6706a1] [PMID]
4. Halladay AK, et al. Sex and gender differences in autism spectrum disorder: summarizing evidence gaps and identifying emerging areas of priority. Mol Autism, 2015; 6(1): 1-5. [DOI:10.1186/s13229-015-0019-y] [PMID]
5. Frazier TW, et al. Behavioral and cognitive characteristics of females and males with autism in the Simons Simplex Collection. J Am Acad Child Adolesc Psychiatr. 2014; 53(3): 329-340. e3. [DOI:10.1016/j.jaac.2013.12.004] [PMID]
6. Lu J, et al. Rethinking autism: the impact of maternal risk factors on autism development. Am J Translat Res. 2022; 14(2): 1136.
7. Schepici G, et al. Autism spectrum disorder and miRNA: An overview of experimental models. Brain Sci. 2019; 9(10): 265. [DOI:10.3390/brainsci9100265] [PMID]
8. Aw S, Cohen SM. Time is of the essence: microRNAs and age-associated neurodegeneration. Cell Res. 2012; 22(8): 1218-1220. [DOI:10.1038/cr.2012.59] [PMID]
9. Cao X, et al. Noncoding RNAs in the mammalian central nervous system. Ann Rev Neurosci. 2006; 29: 77-103. [DOI:10.1146/annurev.neuro.29.051605.112839] [PMID]
10. Xu B, et al. MicroRNA dysregulation in neuropsychiatric disorders and cognitive dysfunction. Neurobiol Dis. 2012; 46(2): 291-301. https://doi.org/10.1016/j.nbd.2012.02.016 [DOI:10.1016/j.nbd.2009.01.010] [PMID]
11. Vaishnavi V, Manikandan M, Munirajan AK. Mining the 3′ UTR of autism-implicated genes for SNPs perturbing microRNA regulation. Genom Proteom Bioinform. 2014; 12(2): 92-104. [DOI:10.1016/j.gpb.2014.01.003] [PMID]
12. Mundalil Vasu M, et al. Serum microRNA profiles in children with autism. Mol Autism, 2014; 5: 40. [DOI:10.1186/2040-2392-5-40] [PMID]
13. Popov NT, et al. Micro RNA HSA-486-3P gene expression profiling in the whole blood of patients with autism. Biotech Biotechnol Equip. 2012; 26(6): 3385-3388. [DOI:10.5504/BBEQ.2012.0093]
14. Weber JA, et al. The microRNA spectrum in 12 body fluids. Clin Chem. 2010; 56(11): 1733-1741. [DOI:10.1373/clinchem.2010.147405] [PMID]
15. Abrahams BS, et al. SFARI Gene 2.0: a community-driven knowledgebase for the autism spectrum disorders (ASDs). Mol Autism, 2013; 4(1): 36. [DOI:10.1186/2040-2392-4-36] [PMID]
16. Licursi V, et al. MIENTURNET: an interactive web tool for microRNA-target enrichment and network-based analysis. BMC Bioinform. 2019; 20(1): 545. [DOI:10.1186/s12859-019-3105-x] [PMID]
17. Xie Z, et al. Gene set knowledge discovery with enrichr. Curr Protoc. 2021; 1(3): e90. [DOI:10.1002/cpz1.90] [PMID]
18. Morimoto Y, et al. Atypical sensory characteristics in autism spectrum disorders, in autism spectrum disorders. Grabrucker AM Editor. Copyright: The Authors: Brisbane (AU). Exon Publications, 2021. 10.36255/exonpublications.autismspectrumdisorders.2021.atypicalsensorycharacteristics []
19. Frye RE, et al. MicroRNA expression profiles in autism spectrum disorder: role for miR-181 in immunomodulation. J Pers Med. 2021; 11(9). [DOI:10.3390/jpm11090922] [PMID]
20. Werling DM, et al. An analytical framework for whole-genome sequence association studies and its implications for autism spectrum disorder. Nat Genet. 2018; 50(5): 727-736. [DOI:10.1038/s41588-018-0107-y] [PMID]
21. Satterstrom FK, et al. Large-scale exome sequencing study implicates both developmental and functional changes in the neurobiology of autism. Cell, 2020; 180(3): 568-584.e23.
22. Friedman RC, et al. Most mammalian mRNAs are conserved targets of microRNAs. Genom Res. 2009; 19(1): 92-105. [DOI:10.1101/gr.082701.108] [PMID]
23. Hicks SD, Middleton FA. A comparative review of microRNA expression patterns in autism spectrum disorder. Front Psychiatr. 2016; 7: 176. [DOI:10.3389/fpsyt.2016.00176] [PMID]
24. Ghahramani Seno MM, et al. Gene and miRNA expression profiles in autism spectrum disorders. Brain Res. 2011; 1380: 85-97. [DOI:10.1016/j.brainres.2010.09.046] [PMID]
25. Eulalio A, Huntzinger E, Izaurralde E. Getting to the root of miRNA-mediated gene silencing. Cell, 2008; 132(1): 9-14. [DOI:10.1016/j.cell.2007.12.024] [PMID]
26. Wang QG, et al. miR-320a in serum exosomes promotes myocardial fibroblast proliferation via regulating the PIK3CA/Akt/mTOR signaling pathway in HEH2 cells. Exp Ther Med. 2021; 22(2): 873. [DOI:10.3892/etm.2021.10305] [PMID]
27. Li HY, et al. Bone marrow-derived mesenchymal stem cells repair severe acute pancreatitis by secreting miR-181a-5p to target PTEN/Akt/TGF-β1 signaling. Cell Signal, 2020; 66: 109436. [DOI:10.1016/j.cellsig.2019.109436] [PMID]
28. Mor M, et al. Hypomethylation of miR-142 promoter and upregulation of microRNAs that target the oxytocin receptor gene in the autism prefrontal cortex. Mol Autism, 2015; 6: 46. [DOI:10.1186/s13229-015-0040-1] [PMID]
29. Diao W, et al. Triclosan targets miR-144 abnormal expression to induce neurodevelopmental toxicity mediated by activating PKC/MAPK signaling pathway. J Hazard Mater. 2022; 431: 128560. [DOI:10.1016/j.jhazmat.2022.128560] [PMID]
30. Wang J, et al. Targeting MicroRNA-144/451-AKT-GSK3β axis affects the proliferation and differentiation of radial glial cells in the mouse hippocampal dentate gyrus. ACS Chem Neurosci. 2022; 13(7): 897-909. [DOI:10.1021/acschemneuro.1c00636] [PMID]
31. Carroll LS, Owen MJ. Genetic overlap between autism, schizophrenia and bipolar disorder. Genom Med. 2009; 1(10): 102. [DOI:10.1186/gm102] [PMID]

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.