Volume 5, Issue 4 (12-2023)                   sjmshm 2023, 5(4): 1-6 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Amini J, Feridouni E. miR-181-5p, miR-19-3p, miR-144-3p, miR-101-39.2, miR-218-5p Target Autism Genes and Regulate Axon Guidance, cAMP and MAPK Signalling Pathway. sjmshm 2023; 5 (4) :1-6
URL: http://sjmshm.srpub.org/article-3-190-en.html
Department of Medical Biotechnology and Molecular Science, North Khorasan University of Medical Science, Bojnurd, Iran.
Abstract:   (45 Views)
Autism spectrum disorder (ASD) is a term used to describe a constellation of Behavioral and mental disorders and social communication defects with the repetitive activity that is lifelong. Studies recently have shown the complex underpinnings of genetic and high heritability for autism. Due to the widespread behavioural symptoms of the disease in patients with neurodevelopmental disorders, it is difficult to diagnose correctly and quickly. Accordingly, the use of molecular methods and biomarkers such as microRNAs can be useful in diagnosing autism from other neurodevelopmental disorders. In this study, we used databases to find the microRNAs and their target genes that are most associated with the pathogenesis of ASD. The association between autism and other neurodevelopmental disorders was also examined. According to analyzes, microRNAs, miR-181-5p , miR-19-3p, miR-144-3p ,miR-101-39.2,miR-218-5p are most associated with autism.
Full-Text [PDF 537 kb]   (10 Downloads)    
Type of Study: Research | Subject: Biochemistry, Genetics and Molecular Biology (General)
Received: 2023/09/15 | Revised: 2023/11/22 | Accepted: 2023/11/28 | Published: 2023/12/25

References
1. Grabrucker AM Editor. Autism Spectrum Disorders. Exon Publications Copyright© 2021, Brisbane (AU). 2021. [DOI:10.36255/exonpublications.autismspectrumdisorders.2021]
2. Sauer AK, et al. Autism Spectrum disorders: Etiology and pathology. Exon Publications, 2021; 1-15. [DOI:10.36255/exonpublications.autismspectrumdisorders.2021.etiology]
3. Baio J, et al. Prevalence of autism spectrum disorder among children aged 8 years-autism and developmental disabilities monitoring network, 11 sites, United States, 2014. MMWR Surveillance Summaries, 2018; 67(6): 1. [DOI:10.15585/mmwr.ss6706a1] [PMID]
4. Halladay AK, et al. Sex and gender differences in autism spectrum disorder: summarizing evidence gaps and identifying emerging areas of priority. Mol Autism, 2015; 6(1): 1-5. [DOI:10.1186/s13229-015-0019-y] [PMID]
5. Frazier TW, et al. Behavioral and cognitive characteristics of females and males with autism in the Simons Simplex Collection. J Am Acad Child Adolesc Psychiatr. 2014; 53(3): 329-340. e3. [DOI:10.1016/j.jaac.2013.12.004] [PMID]
6. Lu J, et al. Rethinking autism: the impact of maternal risk factors on autism development. Am J Translat Res. 2022; 14(2): 1136.
7. Schepici G, et al. Autism spectrum disorder and miRNA: An overview of experimental models. Brain Sci. 2019; 9(10): 265. [DOI:10.3390/brainsci9100265] [PMID]
8. Aw S, Cohen SM. Time is of the essence: microRNAs and age-associated neurodegeneration. Cell Res. 2012; 22(8): 1218-1220. [DOI:10.1038/cr.2012.59] [PMID]
9. Cao X, et al. Noncoding RNAs in the mammalian central nervous system. Ann Rev Neurosci. 2006; 29: 77-103. [DOI:10.1146/annurev.neuro.29.051605.112839] [PMID]
10. Xu B, et al. MicroRNA dysregulation in neuropsychiatric disorders and cognitive dysfunction. Neurobiol Dis. 2012; 46(2): 291-301. https://doi.org/10.1016/j.nbd.2012.02.016 [DOI:10.1016/j.nbd.2009.01.010] [PMID]
11. Vaishnavi V, Manikandan M, Munirajan AK. Mining the 3′ UTR of autism-implicated genes for SNPs perturbing microRNA regulation. Genom Proteom Bioinform. 2014; 12(2): 92-104. [DOI:10.1016/j.gpb.2014.01.003] [PMID]
12. Mundalil Vasu M, et al. Serum microRNA profiles in children with autism. Mol Autism, 2014; 5: 40. [DOI:10.1186/2040-2392-5-40] [PMID]
13. Popov NT, et al. Micro RNA HSA-486-3P gene expression profiling in the whole blood of patients with autism. Biotech Biotechnol Equip. 2012; 26(6): 3385-3388. [DOI:10.5504/BBEQ.2012.0093]
14. Weber JA, et al. The microRNA spectrum in 12 body fluids. Clin Chem. 2010; 56(11): 1733-1741. [DOI:10.1373/clinchem.2010.147405] [PMID]
15. Abrahams BS, et al. SFARI Gene 2.0: a community-driven knowledgebase for the autism spectrum disorders (ASDs). Mol Autism, 2013; 4(1): 36. [DOI:10.1186/2040-2392-4-36] [PMID]
16. Licursi V, et al. MIENTURNET: an interactive web tool for microRNA-target enrichment and network-based analysis. BMC Bioinform. 2019; 20(1): 545. [DOI:10.1186/s12859-019-3105-x] [PMID]
17. Xie Z, et al. Gene set knowledge discovery with enrichr. Curr Protoc. 2021; 1(3): e90. [DOI:10.1002/cpz1.90] [PMID]
18. Morimoto Y, et al. Atypical sensory characteristics in autism spectrum disorders, in autism spectrum disorders. Grabrucker AM Editor. Copyright: The Authors: Brisbane (AU). Exon Publications, 2021. 10.36255/exonpublications.autismspectrumdisorders.2021.atypicalsensorycharacteristics []
19. Frye RE, et al. MicroRNA expression profiles in autism spectrum disorder: role for miR-181 in immunomodulation. J Pers Med. 2021; 11(9). [DOI:10.3390/jpm11090922] [PMID]
20. Werling DM, et al. An analytical framework for whole-genome sequence association studies and its implications for autism spectrum disorder. Nat Genet. 2018; 50(5): 727-736. [DOI:10.1038/s41588-018-0107-y] [PMID]
21. Satterstrom FK, et al. Large-scale exome sequencing study implicates both developmental and functional changes in the neurobiology of autism. Cell, 2020; 180(3): 568-584.e23.
22. Friedman RC, et al. Most mammalian mRNAs are conserved targets of microRNAs. Genom Res. 2009; 19(1): 92-105. [DOI:10.1101/gr.082701.108] [PMID]
23. Hicks SD, Middleton FA. A comparative review of microRNA expression patterns in autism spectrum disorder. Front Psychiatr. 2016; 7: 176. [DOI:10.3389/fpsyt.2016.00176] [PMID]
24. Ghahramani Seno MM, et al. Gene and miRNA expression profiles in autism spectrum disorders. Brain Res. 2011; 1380: 85-97. [DOI:10.1016/j.brainres.2010.09.046] [PMID]
25. Eulalio A, Huntzinger E, Izaurralde E. Getting to the root of miRNA-mediated gene silencing. Cell, 2008; 132(1): 9-14. [DOI:10.1016/j.cell.2007.12.024] [PMID]
26. Wang QG, et al. miR-320a in serum exosomes promotes myocardial fibroblast proliferation via regulating the PIK3CA/Akt/mTOR signaling pathway in HEH2 cells. Exp Ther Med. 2021; 22(2): 873. [DOI:10.3892/etm.2021.10305] [PMID]
27. Li HY, et al. Bone marrow-derived mesenchymal stem cells repair severe acute pancreatitis by secreting miR-181a-5p to target PTEN/Akt/TGF-β1 signaling. Cell Signal, 2020; 66: 109436. [DOI:10.1016/j.cellsig.2019.109436] [PMID]
28. Mor M, et al. Hypomethylation of miR-142 promoter and upregulation of microRNAs that target the oxytocin receptor gene in the autism prefrontal cortex. Mol Autism, 2015; 6: 46. [DOI:10.1186/s13229-015-0040-1] [PMID]
29. Diao W, et al. Triclosan targets miR-144 abnormal expression to induce neurodevelopmental toxicity mediated by activating PKC/MAPK signaling pathway. J Hazard Mater. 2022; 431: 128560. [DOI:10.1016/j.jhazmat.2022.128560] [PMID]
30. Wang J, et al. Targeting MicroRNA-144/451-AKT-GSK3β axis affects the proliferation and differentiation of radial glial cells in the mouse hippocampal dentate gyrus. ACS Chem Neurosci. 2022; 13(7): 897-909. [DOI:10.1021/acschemneuro.1c00636] [PMID]
31. Carroll LS, Owen MJ. Genetic overlap between autism, schizophrenia and bipolar disorder. Genom Med. 2009; 1(10): 102. [DOI:10.1186/gm102] [PMID]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.