دوره 4، شماره 4 - ( 10-1401 )                   جلد 4 شماره 4 صفحات 8-1 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Atefpour Y, Zonobian M. SARS Cov-2 and Microbial Coinfection (with an Emphasis on Bacteria). sjmshm 2022; 4 (4) :1-8
URL: http://sjmshm.srpub.org/article-3-186-fa.html
عاتف پور یوسف، زنوبیان محمد علی. SARS Cov-2 و عفونت همزمان میکروبی (با تاکید بر باکتری). نشریه علوم پزشکی و مدیریت سلامت. 1401; 4 (4) :1-8

URL: http://sjmshm.srpub.org/article-3-186-fa.html


دانشکده علوم و بیوتکنولوژی، دانشگاه شهید بهشتی، تهران، ایران
چکیده:   (311 مشاهده)
همه گیری سندرم حاد تنفسی جدید کرونا-2 (SARS-CoV-2) عامل بیماری زا اصلی ذات الریه به سرعت در حال گسترش به نام بیماری کروناویروس 2019 (COVID-19) است و از جنبه های مختلف تهدیدهای بزرگی برای جهان به شمار می رود. . عفونت همزمان باکتریایی شدت عفونت‌های ویروسی تنفسی را افزایش می‌دهد و علل مکرر مرگ و میر در همه‌گیری آنفولانزا است، اما در بیماران مبتلا به بیماری کرونا به خوبی مشخص نشده است. این مقاله مروری است حهت بروز رسانی عفونت همزمان ویروس و باکتری با تاکید بر باکتری- با SARS-CoV-2 و خلاصه ای از اثرات آنها بر COVID-19، دلایل عفونت همزمان و تشخیص برای تأکید بر اهمیت عفونت همزمان میکروبی در COVID-19.
متن کامل [PDF 469 kb]   (101 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: ویروس شناسی
دریافت: 1401/6/24 | ویرایش نهایی: 1401/8/22 | پذیرش: 1401/9/1 | انتشار: 1401/10/4

فهرست منابع
1. https://covid19.who.int
2. Castagnoli R, Votto M, Licari A, Brambilla I, Bruno R, Perlini S, Rovida F, Baldanti F, Marseglia GL. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in children and adolescents: a systematic review. JAMA Pediatr. 2020; [DOI:10.1001/jamapediatrics.2020.1467] [PMID]
3. Ruuskanen O, Lahti E, Jennings LC, Murdoch DR. Viral pneumonia. Lancet, 2011; 377(9773): 1264-1275. https://doi.org/10.1016/S0140-6736(10)61459-6 [DOI:10.1016/s0140-6736(10)61459-6] [PMID]
4. Morens DM, et al. Pandemic COVID-19 joins history's pandemic legion. mBio 11, 2020; e00812-20. [DOI:10.1128/mBio.00812-20] [PMID] []
5. Memish ZA, et al. Middle east respiratory syndrome. Lancet, 2020; 395: 1063-1077. [DOI:10.1016/S0140-6736(19)33221-0] [PMID]
6. Morens DM, et al. Predominant role of bacterial pneumonia as a cause of death in pandemic influenza: implications for pandemic influenza preparedness. J Infect Dis. 2008; 198: 962-970. [DOI:10.1086/591708] [PMID] []
7. Crotty MP, Meyers S, Hampton N, et al. Epidemiology, coinfections, and outcomes of viral pneumonia in adults: An observational cohort study. Med (Baltimore). 2015; 94: e2332-e2332. [DOI:10.1097/MD.0000000000002332] [PMID] []
8. Morris DE, Cleary DW, Clarke SC. Secondary bacterial infections associated with influenza pandemics. Front Microbiol. 2017; 8: 1041. [DOI:10.3389/fmicb.2017.01041] [PMID] []
9. Cillóniz C, Ewig S, Menéndez R, et al. Bacterial co-infection with H1N1 infection in patients admitted with community acquired pneumonia. J Infect. 2012; 65: 223-230. [DOI:10.1016/j.jinf.2012.04.009] [PMID] []
10. Rice TW, Rubinson L, Uyeki TM, et al. Critical illness from 2009 pandemic influenza a (H1N1) virus and bacterial coinfection in the United States. Crit Care Med. 2012; 40: 1487. [DOI:10.1097/CCM.0b013e3182416f23] [PMID] []
11. McCullers JA, Bartmess KC. Role of neuraminidase in lethal synergism between influenza virus and Streptococcus pneumoniae. J Infect Dis. 2003; 187: 1000-1009. [DOI:10.1086/368163] [PMID]
12. Peltola VT, Murti KG, McCullers JA. Influenza virus neuraminidase contributes to secondary bacterial pneumonia. J Infect Dis. 2005; 192: 249-257. [DOI:10.1086/430954] [PMID] []
13. Rothberg MB, Haessler SD, Brown RB. Complications of viral influenza. Am J Med. 2008; 121: 258-264. [DOI:10.1016/j.amjmed.2007.10.040] [PMID] []
14. van der Hoek L, Ihorst G, Sure K, et al. Burden of disease due to human coronavirus NL63 infections and periodicity of infection. J Clin Virol. 2010; 48: 104-108. [DOI:10.1016/j.jcv.2010.02.023] [PMID] []
15. Abdel-Moneim AS. Middle east respiratory syndrome coronavirus (MERS-CoV): Evidence and speculations. Arch Virol. 2014; 159: 1575-1584. [DOI:10.1007/s00705-014-1995-5] [PMID] []
16. Baroudy NRE, Refay ASE, Hamid TAA, et al. Respiratory viruses and atypical bacteria co-infection in children with acute respiratory infection. Open Access Maced J Med Sci. 2018; 6: 1588-1593. [DOI:10.3889/oamjms.2018.332] [PMID] []
17. Smith AM, McCullers JA. Secondary bacterial infections in influenza virus infection pathogenesis. Curr Top Microbiol Immunol. 2014; 385: 327-356. [DOI:10.1007/82_2014_394] [PMID] []
18. Rasoul Mirzaei, Pedram Goodarzi, et al. Bacterial co-infections with SARS-CoV-2. 2020; IUBMB Life: doi: 10.1002/iub.2356 [DOI:10.1002/iub.2356] [PMID] []
19. Edrada EM, Lopez EB, Villarama JB, Villarama EPS, Dagoc BF, et al. First COVID-19 infections in the Philippines: A case report. Trop Med Health. 2020; 48: 1-7. https://doi.org/10.1186/s41182-020-00203-0 [DOI:10.1186/s41182-020-00218-7] [PMID] []
20. Johansson N, Kalin M, Hedlund J. Clinical impact of combined viral and bacterial infection in patients with communityacquired pneumonia. Scand J Infect Dis. 2011; 43: 609-615. [DOI:10.3109/00365548.2011.570785] [PMID]
21. Golda A, Malek N, Dudek B, et al. Infection with human coronavirus NL63 enhances streptococcal adherence to epithelial cells. J Gen Virol. 2011; 92: 1358-1368. [DOI:10.1099/vir.0.028381-0] [PMID] []
22. Zahariadis G, Gooley TA, Ryall P, et al. Risk of ruling out severe acute respiratory syndrome by ruling in another diagnosis:Variable incidence of atypical bacteria coinfection based on diagnostic assays. Can Respir J. 2006; 13: 17-22. [DOI:10.1155/2006/862797] [PMID] []
23. Alfaraj SH, Al-Tawfiq JA, Altuwaijri TA, Memish ZA. Middle east respiratory syndrome coronavirus and pulmonary tuberculosis coinfection: Implications for infection control. Intervirol. 2017; 60: 53-55. [DOI:10.1159/000477908] [PMID] []
24. Wang J-b, Xu N, Shi H-z, et al. Organism distribution and drug resistance in 7 cases of severe acute respiratory syndrome death patients with secondary bacteria infection. Chin Crit Care Med. 2003; 15: 523-525.
25. Bordi L, Nicastri E, Scorzolini L, et al. Differential diagnosis of illness in patients under investigation for the novel coronavirus (SARS-CoV-2), Italy, February 2020. Eurosurveillance. 2020; 25: 2000170. [DOI:10.2807/1560-7917.ES.2020.25.8.2000170] [PMID] []
26. Kiedrowski MR, Bomberger JM. Viral-bacterial co-infections in the cystic fibrosis respiratory tract. Front Immunol. 2018; 9: 3067. [DOI:10.3389/fimmu.2018.03067] [PMID] []
27. Brockmeier SL, Loving CL, Nicholson TL, Palmer MV. Coinfection of pigs with porcine respiratory coronavirus and Bordetella bronchiseptica. Vet Microbiol. 2008; 128(1-2): 36-47. [DOI:10.1016/j.vetmic.2007.09.025] [PMID] []
28. Tan L, Wang Q, Zhang D, Ding J, Huang Q, Tang YQ, Wang Q, Miao H. Lymphopenia predicts disease severity of COVID-19: a descriptive and predictive study. Signal Transduct Target Ther. 2020; 5(1): 33. [DOI:10.1038/s41392-020-0148-4] [PMID] []
29. Martins-Filho PR, Tavares CSS, Santos VS. Factors associated with mortality in patients with COVID-19. A quantitative evidence synthesis of clinical and laboratory data. Eur J Intern Med. 2020; 76: 97-99. [DOI:10.1016/j.ejim.2020.04.043] [PMID] []
30. Xi Chen, Binyou Liao, Lei Cheng, et al. The microbial coinfection in COVID-19 (mini review). Appl Microbiol Biotechnol. 2020; [DOI:10.1007/s00253-020-10814-6] [PMID] []
31. Lin D, Liu L, Zhang M, Hu Y, Yang Q, Guo J, Guo Y, Dai Y, Xu Y, Cai Y, Chen X, Zhang Z, Huang K Co-infections of SARS-CoV-2 with multiple common respiratory pathogens in infected patients. Sci China Life Sci. 2020; 63(4): 606-609. [DOI:10.1007/s11427-020-1668-5] [PMID] []
32. Richardson S, Hirsch JS, Narasimhan M, Crawford JM, McGinn T, Davidson KW, Barnaby DP, Becker LB, Chelico JD, Cohen SL, Cookingham J, Coppa K, Diefenbach MA, Dominello AJ, Duer-Hefele J, Falzon L, Gitlin J, Hajizadeh N, Harvin TG, Hirschwerk DA, Kim EJ, Kozel ZM, Marrast LM, Mogavero JN, Osorio GA, Qiu M, Zanos TP. Presenting characteristics, comorbidities, and outcomes among 5700 patients hospitalized with COVID-19 in the New York city area. Jama, 2020 [DOI:10.1001/jama.2020.6775] [PMID] []
33. Wang M, Wu Q, Xu W, Qiao B, Wang J, Zheng H, Jiang S, Mei J, Wu Z, Deng Y, Zhou F, Wu W, Zhang Y, Lv Z, Huang J, Guo X, Feng L, Xia Z, Li D, Xu Z, Liu T, Zhang P, Tong Y, Li Y. Clinical diagnosis of 8274 samples with 2019-novel coronavirus in Wuhan. medRxiv. 2020b; 2020.02.12.20022327: doi: [DOI:10.1101/2020.02.12.20022327]
34. Kim D, Quinn J, Pinsky B, Shah NH, Brown I. Rates of coinfection between SARS-CoV-2 and other respiratory pathogens. Jama, 2020 [DOI:10.1001/jama.2020.6266] [PMID] []
35. Lai CC, Wang CY, Hsueh PR. Co-infections among patients with COVID-19: The need for combination therapy with non-anti-SARS-CoV-2 agents? J Microbiol Immunol Infect. 2020b; [DOI:10.1016/j.jmii.2020.05.013] [PMID] []
36. Blanco JL, Ambrosioni J, Garcia F, Martínez E, Soriano A, Mallolas J, Miro JM. COVID-19 in patients with HIV: clinical case series. Lancet HIV. 2020; 7(5): e314-e316. [DOI:10.1016/S2352-3018(20)30111-9] [PMID]
37. Kiley JL, Chung KK, Blyth DM. Viral infections in burns. Surg Infect (Larchmt). 2020; [DOI:10.1089/sur.2020.130] [PMID]
38. Nickbakhsh S, Mair C, Matthews L, Reeve R, Johnson PCD, Thorburn F, vonWissmann B, Reynolds A, McMenamin J, Gunson RN, Murcia PR. Virus-virus interactions impact the population dynamics of influenza and the common cold. Proc Natl Acad Sci USA. 2019; 116(52): 27142-27150. [DOI:10.1073/pnas.1911083116] [PMID] []
39. Ferretti L, Wymant C, Kendall M, Zhao L, Nurtay A, Abeler-Dörner L, Parker M, Bonsall D, Fraser C. Quantifying SARS-CoV-2 transmission suggests epidemic control with digital contact tracing. Sci. 2020; 368(6491): eabb6936. [DOI:10.1126/science.abb6936] [PMID] []
40. Jose A Bengoechea, Connor GG Bamford. SARS-CoV-2, bacterial co-infections, and AMR: the deadly trio in COVID-19? EMBO-2020. [DOI:10.32415/jscientia_2020_6_5_42-50]
41. Lippi G, Plebani M. Procalcitonin in patients with severe coronavirus disease 2019 (COVID-19): A meta-analysis. Clin Chim Acta. 2020; 505: 190-191. [DOI:10.1016/j.cca.2020.03.004] [PMID] []
42. Budayanti NS, Suryawan K, Iswari IS, Sukrama DM. The quality of sputum specimens as a predictor of isolated bacteria from patients with lower respiratory tract infections at a tertiary referral hospital, Denpasar, Bali-Indonesia. Front Med (Lausanne). 2019; 6: 64. [DOI:10.3389/fmed.2019.00064] [PMID] []
43. Peng X, Xu X, Li Y, Cheng L, Zhou X, Ren B. Transmission routes of 2019-nCoV and controls in dental practice. Int J Oral Sci. 2020; 12(1): 9. [DOI:10.1038/s41368-020-0075-9] [PMID] []
44. Qin C, Zhou L, Hu Z, Zhang S, Yang S, Tao Y, Xie C, Ma K, Shang K, Wang W, Tian DS. Dysregulation of immune response in patients with COVID-19 in Wuhan. China. Clin Infect Dis. 2020; 71: 762-768. [DOI:10.1093/cid/ciaa248] [PMID] []
45. D'Cruz RJ, CurrierAW, Sampson VB. Laboratory testing methods for novel severe acute respiratory syndrome-coronavirus-2 (SARSCoV-2). Front Cell Dev Biol. 2020; 8: 468. [DOI:10.3389/fcell.2020.00468] [PMID] []
46. Priti Devi, Azka Khan, et al. Co-infections as modulators of disease outcome: minor players or major players? Front Microbiol. 2021 06 July; [DOI:10.3389/fmicb.2021.664386] [PMID] []

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.